КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. аль-Фараби

Физико-технический факультет Кафедра физики твердого тела и нелинейной физики

Утверждено

на заседании Ученого совета Физико-технического факультета Протокол N_2 от 2016 г.

Декан факультета

А. Е. Давлетов

СИЛЛАБУС

Полупроводниковые приборы

2 курс, р/о, 2 кредита для специальности **5В071800** - Электроэнергетика

Лектор (лекции, семинары, СРС):

Мигунова Анастасия Анатольевна, старший преподаватель КФТТиНФ

Телефон: 3773412 (КФТТиНФ), моб. 87054433515

e-mail: anastassiya.migunova@gmail.com

каб. 119

Показатели дисциплины

Цель: Изучить физические процессы в полупроводниковых приборах

Задачи: Приобретение базовых знаний по основным типам электронных приборов, использующих в работе различные поверхностные и контактные явления в полупроводниках, эффекты в электромагнитных полях, при различных температурах и уровнях освещенности, функционирующих в цепях постоянного и переменного тока.

Компетенции (результаты обучения): Ознакомление с технологическими методами формирования полупроводниковых кристаллов, областей с разным типом проводимости и уровнем легирования. Умение измерять и рассчитывать параметры полупроводниковых приборов и материалов.

СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Не-		Кол-	Макси-	
де-	Название темы	во	мальный	
ЛЯ		часов	балл	
M	Модуль 1 - Твердотельная электроника. Барьерные структуры, их характеристики,			
	разновидности и методы формирования			
1	Лекция. Барьер Шоттки. Энергетическая диаграмма и вольт-	1	0	
	амперная характеристика (ВАХ) контакта металл-полупроводник			
	Семинар. Расчет диодов Шоттки: контактной разности	1	12	
	потенциалов, ширины области пространственного заряда в			
	термодинамическом равновесии и с приложенным прямым и			
	обратным напряжением			
	СРСП. Диффузионная и диодная теории выпрямления	1	2	

	Схемы с общей базой, общим эмиттером и общим коллектором	-	Ŭ
11	Лекция. Биполярные транзисторы. Основные характеристики.	1	0
	Модуль 3 - Приборы с двумя и более переходами	I	
	СРСП. Обращенные диоды	1	2
	Семинар. Расчет туннельного диода	1	5
	помощью зонных диаграмм и ВАХ		
10	Лекция. Туннельные диоды. Объяснение принципа работы с	1	0
	СРСП. Лавинно-пролетные диоды	1	2
	Семинар. Расчет диодов Ганна на основе GaN и GaAs	1	7
9	Лекция. Диоды Ганна	1	0
	Модуль 2 – Приборы, использующие явления в сильных п		
8	Промежуточный экзамен/MiTerm	2	100
	· · · · · · · · · · · · · · · · · · ·	L	
	1 Рубежный контроль	0	100
	(тензодатчики)		
	магнетосопротивление. Полупроводниковые датчики деформации		
	СРСП. Магниторезистивный эффект. Гигантское	1	2
	пленок		
	удельного сопротивления эпитаксиальных высоколегированных		
	Семинар. Расчет транспортных характеристик, концентрации и	1	14
7	Лекция. Эффект Холла	1	0
	перехода		
	СРСП. Явления, происходящие при различных видах пробоя <i>p-n</i>	1	2
	Семинар. Расчет параметров стабилитронов и варикапов	1	6
	Варикапы. Стабилитроны		
6	Лекция. Диффузионная и барьерная емкости <i>p-n</i> перехода.	1	0
	СРСП. Планарная технология. Процессы литографии	1	2
	и емкости ОПЗ		
	поверхностного потенциала, плотности пространственного заряда		
	Определение состояния поверхности, изгиба зон для конкретного		
	Семинар. Расчет n -канального МДП-транзистора с Al-затвором.	1	12
5	Лекция. Физика поверхности полупроводников и МДП-структуры	1	0
	способ		_
	СРСП. Сплавной метод получения переходов. Эпитаксиальный	1	2
	требуемых параметров перехода подобрать параметры диффузии		
	примеси по заданным параметрам диффузии. Обратная задача: для		
	перехода и концентрационного профиля при загонке и разгонке		
	Семинар. Прямая задача: определение глубины залегания p - n	1	14
4	Лекция. Диффузионный метод формирования <i>p-n</i> переходов	1	0
A	гетеропереходы. Выращивание вискеров по ПЖК-механизму	1	
	СРСП. Требования к материалам, из которых изготавливают	1	2
	ТД равновесии, построение зонной диаграммы	1	2
	Семинар. Расчет гетероперехода n-InAs/p-GaSb (разрывной) при	1	14
3	Лекция. Гетеропереходы. Зонные диаграммы. Разрывы зон	1	0
2	полупроводники	1	0
	СРСП. Факторы, влияющие на ВАХ <i>p-n</i> перехода. Вырожденные	1	2
	термодинамическом (ТД) равновесии	1	
	приложенным напряжением обеих полярностей и в		
	заряда, контактной разности потенциалов, токов, емкостей с		
	Семинар. Расчет p - n перехода: ширины области пространственного	1	14
	Энергетическая диаграмма и ВАХ		
	Лекция. Электронно-дырочный (<i>p-n</i>) переход. Параметры перехода.		

Семинар. Расчет малосигнальных параметров 2Т312Б СРСП. Режимы включения и дифференциальные параметры БТ 12 Лекция. Полевые транзисторы. Униполярная проводимость. Схемы	1 1	14
12 Лекция. Полевые транзисторы. Униполярная проводимость. Схемы	1	2
' 1 1 1 '		2
	1	0
включения полевых транзисторов		
Семинар. Решение задач на определение параметров полевых	1	12
транзисторов и ПЗС-матриц		
СРСП. Тиристоры	1	2
Модуль 4 - Оптоэлектронные приборы		
13 Лекция. Твердотельные лазеры, основные характеристики лазеров	1	0
(длина волны, длительность импульсов, расходимость пучка,		
поляризация, мощность излучения, добротность, КПД, способы		
накачки, собственные частоты резонаторов). Схемы		
энергетических уровней рубинового лазера		
Семинар. Расчет параметров рубинового, Ti:Sa, Nd:YAG-лазеров	1	14
СРСП. Лазерное усиление и генерация (инжекция носителей	1	2
заряда, порог инверсии, понятие положительной обратной связи)		
14 Лекция. Фотодетекторы: фоторезисторы, фотодиоды,	1	0
фототранзисторы. Оптопары		
Семинар. Расчет фоторезистора и лавинного фотодиода	1	7
СРСП. Оптические характеристики светоизлучающих диодов	1	2
(СИД): мощность, внутренний и внешний квантовый выход, КПД,		
спектр излучения, индикатрисы рассеяния		
15 Лекция. Фотовольтаика. Солнечные элементы. Принцип работы.	1	0
Основные характеристики. Энергетические диаграммы и ВАХ		
фотоэлементов		
Семинар. Расчет параметров СЭ по ВАХ: определение напряжения	1	14
холостого хода и тока короткого замыкания, коэффициента		
заполнения ВАХ, КПД, последовательного и шунтирующего		
сопротивлений		
СРСП. Понятия спектральной характеристики СЭ, коэффициента	1	2
собирания, монохроматической токовой чувствительности,		
внутреннего и внешнего квантового выхода СЭ		
Контрольная работа	1	13
2 Рубежный контроль	0	100
Экзамен	2	100
ВСЕГО		100

Итоговая оценка по дисциплине = $\frac{PK1 + PK2}{2} \cdot 0.6 + 0.1MT + 0.3ИK$

Здесь РК1, РК2 — оценки рубежного контроля (сумма оценок текущего контроля), МТ — оценка за Midterm Exam; ИК — оценка итогового контроля (экзамен во время сессии). Итоговая оценка по дисциплине рассчитывается и округляется в системе «Универ» автоматически.

На одной неделе допускается выставление не более 50 баллов по одной дисциплине.

СПИСОК ЛИТЕРАТУРЫ

Основная:

- 1 Гуртов В.А. Твердотельная электроника. М.: Техносфера. 2005. 408 с.
- 2 Гарматюк С. С. Задачник по устройствам генерирования радиосигналов. М.: ДМК Пресс.
- 2012. 672 c.
- 3 Шалимова К. В. Физика полупроводников. М.: Энергоатомиздат. 1985. 392 с.

- 4 Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. СПб: Лань. 2002. 480 с.
- 5 Зи С. Физика полупроводниковых приборов. М.: Мир. 1984. 912 с.
- 6 Гаман В.И. Физика полупроводниковых приборов. Уч. пособие. Томск: Издат-во НТЛ, $2000.-426~\mathrm{c}.$
- 7 Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. М.: Советское радио, 1980. 296 с.
- 8 Степаненко И. П. Основы микроэлектроники. М. 2001. 488 с.
- 9 Шарупич Л. С., Тугов Н. М. Оптоэлектроника. М.: Энергоатомиздат. 1984. 256 с.
- 103еегер К. Физика полупроводников. М.: Мир. 1977. 615 с.
- 11 Зиненко В.И., Сорокин Б.П., Турчин П.П. Основы физики твердого тела. М.: Физматлит. 2000. 332 с.
- 12 Ефимов И. Е., Козырь И.Я. Основы микроэлектроники. 2008. 384 с.
- 13 Старосельский В.И. Физика полупроводниковых приборов микроэлектроники. –
- 14 Верещагин И.К., Кокин В.А. и др. Физика твердого тела. М.: Вш. шк. 2001. 237 с.
- 15 Займан Д. Принципы теории твердого тела. М.: Мир. 1974. 468 с.
- 16 Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука. 1977. –
- 17 Горбачев В.В., Спицына Л.Г. Физика полупроводников и металлов. «Металлургия», $1982. 336 \, c.$
- 18 Пикус Г. Е. Основы теории полупроводниковых приборов

Дополнительная:

- 1 Пичугин И.Г., Таиров Ю.М. Технология полупроводниковых приборов. М.: ВШ. 1984. 288 с.
- 2 Курносов А. И., Юдин В. В. Технология производства полупроводниковых приборов и интегральных микросхем. М.: ВШ. 1986. 368 с.
- 3 Епифанов Г. И. Физика твердого тела. M.: BIII. 1977. 288 с.
- 4 Овечкин Ю. А. Микроэлектроника. М.: Радио и связь. 1982. 288 с.
- 5 Родерик Э. Х. Контакты металл-полупроводник. М.: Радио и связь. 1982. 208 с.
- 6 Хакен Х. Квантовая теория твердого тела. М.: Наука. 1980. 344 с.
- 7 Давыдов А. С. Теория твердого тела. M.: Hayка. 1976. 637 с.
- 8 Петухов В.М. Полупроводниковые приборы. Транзисторы. –
- 9 Гитцевич, А. А. Зайцев, В. В. и др. Полупроводниковые приборы. Диоды выпрямительные. Стабилитроны. Тиристор. –
- 10 Гитцевич, А. А. Зайцев, В. В. и др. Полупроводниковые приборы. Диоды высокочастотные. Диоды импульсные. Оптоэлектронные приборы.
- 11 Горюнов Н. Н. Полупроводниковые приборы: Транзисторы. М.: Энергоатомиздат. 1985. с.
- 12 Николаевский И. Ф., Игумнов Д. В. Параметры и предельные режимы работы транзисторов. М.: Советское радио. 1971. 384 с.

ПОЛИТИКА НАЧИСЛЕНИЯ БАЛЛОВ

Внимание! Необходимо выполнять задания своевременно! Каждый студент набирает максимально 14-15 баллов в неделю.

С третьей недели вводится т. наз. «**ПРОГРЕССИВКА**»: получить недостающие баллы через неделю и в последующее время невозможно, поскольку в УМКД публикуются решения задач. С этого момента они считаются обнародованными и засчитываться не будут.

Преподаватель не несет ответственности за упущенную возможность. Попытки надавить и выбить дополнительные задания будут оставлены без внимания.

В таблице указаны максимальные баллы, которые можно получить за каждое задание. В семинарах, домашних работах «стоимость» каждого задания указываются.

Лекции и дополнительный материал предоставляются еженедельно как путем выставления в УМКД, так и рассылкой каждому студенту на его электронную почту.

Если студент выполняет задание в какой-либо программе, баллы за это задание удваиваются. Если студент набирает решение в редакторе формул Word'а, к цене задачи добавляются 2 балла. Оба критерия действительны только в случае правильного решения!

Студент **ОБЯЗАН** представить задание на проверку на листе бумаги с указанием фамилии, специальности, группы и номера Семинара (Домашнего задания). Если эти данные неполные, проверка может быть отклонена за халатное отношение. Бумажный вариант не возвращается студенту и остается у преподавателя. Поэтому рекомендуется предварительно решить задачи в своей тетради. Если обучающийся высылает преподавателю на почту выполненное задание в электронном виде, то он должен позаботиться о том, чтобы его файл пришел накануне, не позднее срока опубликования решения. Идентификационные параметры файла такие же, как и подпись бумажного варианта решения.

В этом курсе введены две популярные среди студентов меры!

«КЛУБ МИЛЛИОНЕРОВ» - почетное звание для студентов, набравших 100 баллов за РК по накопительной системе.

Миллионер, получивший предельно возможный балл до окончания РК может продолжать выполнять задания и зарабатывать баллы. Лишние баллы он может назначить любому человеку из своей группы, а также в любой группе, где ведет занятия данный преподаватель. Эта система получила название «ТРАНСФЕРТ БАЛЛОВ». Согласно положению о трансферте, дабы не нарушать закона сохранения энергии, а баллы это именно эквивалент энергии, баллы могут быть назначены одним студентом другому, но не могут «взяться с потолка», т. е. быть «подаренными» преподавателем.

АКАДЕМИЧЕСКАЯ ПОЛИТИКА КУРСА

Оценка по буквенной системе	Цифровой эквивалент баллов	%-ное содержание	Оценка по традиционной системе
A	4,0	95-100	Отлично
A-	3,67	90-94	
B+	3,33	85-89	Хорошо
В	3,0	80-84	
B-	2,67	75-79	
C+	2,33	70-74	Удовлетворительно
С	2,0	65-69	1
C-	1,67	60-64	1
D+	1,33	55-59	1
D-	1,0	50-54	1
F	0	0-49	Неудовлетворительно
I	-	-	«Дисциплина не завершена»
(Incomplete)			(не учитывается при вычислении <i>GPA</i>)
P	-	-	«Зачтено»
(Pass)			(не учитывается при вычислении GPA)
NP	-	-	«Не зачтено»
(No Pass)			(не учитывается при вычислении <i>GPA</i>)
W	-	-	«Отказ от дисциплины»
(Withdrawal)			(не учитывается при вычислении <i>GPA</i>)
AW			Снятие с дисциплины по академическим
(Academic Withdrawal)			причинам
			(не учитывается при вычислении <i>GPA</i>)
AU	-	-	«Дисциплина прослушана»

(Audit)			(не учитывается при вычислении <i>GPA</i>)
Атт.		30-60	Аттестован
		50-100	
Не атт.		0-29	Не аттестован
		0-49	
R (Retake)	-	-	Повторное изучение дисциплины

Рассмотрено на заседании кафедры протокол № от

Заведующий КФТТиНФ, профессор

Г. Ш. Яр-Мухамедова

Старший преподаватель

А. А. Мигунова